Search results

1 – 5 of 5
Article
Publication date: 14 March 2024

Yuehua Zhao, Linyi Zhang, Chenxi Zeng, Yidan Chen, Wenrui Lu and Ningyuan Song

This study aims to address the growing importance of online health information (OHI) and the associated uncertainty. Although previous research has explored factors influencing…

113

Abstract

Purpose

This study aims to address the growing importance of online health information (OHI) and the associated uncertainty. Although previous research has explored factors influencing the credibility of OHI, results have been inconsistent. Therefore, this study aims to identify the essential factors that influence the perceived credibility of OHI by conducting a meta-analysis of articles published from 2010 to 2022. The study also aims to examine the moderating effects of demographic characteristics, study design and the platforms where health information is located.

Design/methodology/approach

Based on the Prominence-Interpretation Theory (PIT), a meta-analysis of 25 empirical studies was conducted to explore 12 factors related to information content and source, social interaction, individual and media affordance. Moderators such as age, education level, gender of participants, sample size, platforms and research design were also examined.

Findings

Results suggest that all factors, except social support, have significant effects on the credibility of OHI. Among them, argument quality had the strongest correlation with credibility and individual factors were also found to be relevant. Moderating effects indicate that social support was significantly moderated by age and education level. Different sample sizes may lead to variations in the role of social endorsement, while personal involvement was moderated by sample size, platform and study design.

Originality/value

This study enriches the application of PIT in the health domain and provides guidance for scholars to expand the scope of research on factors influencing OHI credibility.

Details

Aslib Journal of Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2050-3806

Keywords

Article
Publication date: 8 August 2016

Fu-Wang Yang, Jiang-Min Huang, Guan-Jun Zhang, Chenxi Zhang, Dong-Lan Sun, Nan-Feng Gao and Shouzhi Yi

The phosphorus and zinc contained in zinc dialkyl dithiophosphate (ZDDP) caused severe environment pollution and catalyst poison. Thus, the phosphorus-free additive, such as…

Abstract

Purpose

The phosphorus and zinc contained in zinc dialkyl dithiophosphate (ZDDP) caused severe environment pollution and catalyst poison. Thus, the phosphorus-free additive, such as borate esters, has become one of studying hot topics in the area of oil additive. However, the stability of hydrolysis greatly limited the use of borate esters. The purpose of this paper is to improve the stability of hydrolysis by synthesizing a new kind of N-containing heterocyclic borate ester (MTTDB) as a lubricant additive.

Design/methodology/approach

The tribological properties of novel borate ester (MTTDB) as an additive in the base oil were studied by a four-ball machine. The element composition and chemical state of the tribofilm were investigated by scanning electron microscopy, energy dispersive spectrometer and X-ray photoelectron spectroscopy.

Findings

The results showed that the base oil lubricated by MTTDB exhibited high hydrolytic stability, good anti-wear property and excellent extreme pressure performance. When 2.5 per cent MTTDB was added into the 100N base oil, the smallest wear scar diameter (0.46 mm) was obtained. Furthermore, the decomposed borate ester, organic sulfide adsorbed on the worn surface was detected, and S element reacted with the steel surface and generated FeSO4, both of which contributed to the formation of the tribofilm.

Originality/value

Based on N-containing heterocyclic compounds, for instance, thiadiazole derivatives, introducing nitrogen and sulfur elements into borate ester, a new kind of N-containing heterocyclic borate ester (MTTDB) exhibited excellent property in hydrolysis stability, friction-reducing, anti-wear and extreme pressure. This synthesized method would be helpful for the borate ester used as additive in engine oil, gear oil and other industrial lubricants.

Details

Industrial Lubrication and Tribology, vol. 68 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 February 2024

Quntao Wu, Qiushi Bo, Lan Luo, Chenxi Yang and Jianwang Wang

This study aims to obtain governance strategies for managing the complexity of megaprojects by analyzing the impact of individual factors and their configurations using the…

Abstract

Purpose

This study aims to obtain governance strategies for managing the complexity of megaprojects by analyzing the impact of individual factors and their configurations using the fuzzy-set qualitative comparative analysis (fsQCA) method and to provide references for project managers.

Design/methodology/approach

With the continuous development of the economy, society and construction industry, the number and scale of megaprojects are increasing, and the complexity is becoming serious. Based on the relevant literature, the factors affecting the complexity of megaprojects are determined through case analysis, and the paths of factors affecting the complexity are constructed for megaprojects. Then, the fsQCA method is used to analyze the factors affecting the complexity of megaprojects through 245 valid questionnaires from project engineers in this study.

Findings

The results support the correlation between the complexity factors of megaprojects, with six histological paths leading to high complexity and seven histological paths leading to low complexity.

Originality/value

It breaks the limitations of the traditional project complexity field through a “configuration perspective” and concludes that megaproject complexity is a synergistic effect of multiple factors. The study is important for enriching the theory of megaproject complexity and providing complexity governance strategies for managers in megaproject decision-making.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 27 December 2022

Ge Li, Qiushi Kang, Fanfan Niu and Chenxi Wang

Bumpless Cu/SiO2 hybrid bonding, which this paper aims to, is a key technology of three-dimensional (3D) high-density integration to promote the integrated circuits industry’s…

Abstract

Purpose

Bumpless Cu/SiO2 hybrid bonding, which this paper aims to, is a key technology of three-dimensional (3D) high-density integration to promote the integrated circuits industry’s continuous development, which achieves the stacks of chips vertically connected via through-silicon via. Surface-activated bonding (SAB) and thermal-compression bonding (TCB) are used, but both have some shortcomings. The SAB method is overdemanding in the bonding environment, and the TCB method requires a high temperature to remove copper oxide from surfaces, which increases the thermal budget and grossly damages the fine-pitch device.

Design/methodology/approach

In this review, methods to prevent and remove copper oxidation in the whole bonding process for a lower bonding temperature, such as wet treatment, plasma surface activation, nanotwinned copper and the metal passivation layer, are investigated.

Findings

The cooperative bonding method combining wet treatment and plasma activation shows outstanding technological superiority without the high cost and additional necessity of copper passivation in manufacture. Cu/SiO2 hybrid bonding has great potential to effectively enhance the integration density in future 3D packaging for artificial intelligence, the internet of things and other high-density chips.

Originality/value

To achieve heterogeneous bonding at a lower temperature, the SAB method, chemical treatment and the plasma-assisted bonding method (based on TCB) are used, and surface-enhanced measurements such as nanotwinned copper and the metal passivation layer are also applied to prevent surface copper oxide.

Details

Microelectronics International, vol. 40 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 27 July 2023

Ying Lu, Yunxuan Deng and Shuqi Sun

Metro stations have become a crucial aspect of urban rail transportation, integrating facilities, equipment and pedestrians. Impractical physical layout designs and pedestrian…

Abstract

Purpose

Metro stations have become a crucial aspect of urban rail transportation, integrating facilities, equipment and pedestrians. Impractical physical layout designs and pedestrian psychology impact the effectiveness of an evacuation during a metro fire. Prior research on emergency evacuation has overlooked the complexity of metro stations and failed to adequately consider the physical heterogeneity of stations and pedestrian psychology. Therefore, this study aims to develop a comprehensive evacuation optimization strategy for metro stations by applying the concept of design for safety (DFS) to an emergency evacuation. This approach offers novel insights into the management of complex systems in metro stations during emergencies.

Design/methodology/approach

Physical and social factors affecting evacuations are identified. Moreover, the social force model (SFM) is modified by combining the fire dynamics model (FDM) and considering pedestrians' impatience and panic psychology. Based on the Nanjing South Metro Station, a multiagent-based simulation (MABS) model is developed. Finally, based on DFS, optimization strategies for metro stations are suggested.

Findings

The most effective evacuation occurs when the width of the stairs is 3 meters and the transfer corridor is 14 meters. Additionally, a luggage disposal area should be set up. The exit strategy of the fewest evacuees is better than the nearest-exit strategy, and the staff in the metro station should guide pedestrians correctly.

Originality/value

Previous studies rarely consider metro stations as sociotechnical systems or apply DFS to proactively reduce evacuation risks. This study provides a new perspective on the evacuation framework of metro stations, which can guide the designers and managers of metro stations.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 5 of 5